Code description
In Spark SQL, row_number
can be used to generate a series of sequential number starting from 1 for each record in the specified window. Examples can be found in this page: Spark SQL - ROW_NUMBER Window Functions.
This code snippet provides the same approach to implement row_number
directly using PySpark DataFrame APIs instead of Spark SQL. It created a window that partitions the data by ACCT
attribute and sorts the records in each partition via TXN_DT
column in descending order. The frame boundary of the window is defined as unbounded preceding and current row.
Output:
+----+------+-------------------+
|ACCT| AMT| TXN_DT|
+----+------+-------------------+
| 101| 10.01|2021-01-01 00:00:00|
| 101|102.01|2021-01-01 00:00:00|
| 102| 93.0|2021-01-01 00:00:00|
| 103| 913.1|2021-01-02 00:00:00|
| 101|900.56|2021-01-03 00:00:00|
+----+------+-------------------+
+----+------+-------------------+------+
|ACCT| AMT| TXN_DT|rownum|
+----+------+-------------------+------+
| 101|900.56|2021-01-03 00:00:00| 1|
| 101| 10.01|2021-01-01 00:00:00| 2|
| 101|102.01|2021-01-01 00:00:00| 3|
| 102| 93.0|2021-01-01 00:00:00| 1|
| 103| 913.1|2021-01-02 00:00:00| 1|
+----+------+-------------------+------+
Code snippet
from pyspark.sql import SparkSession, Window
from datetime import datetime
from pyspark.sql.functions import row_number, desc
app_name = "PySpark row_number Window Function"
master = "local"
spark = SparkSession.builder .appName(app_name) .master(master) .getOrCreate()
spark.sparkContext.setLogLevel("WARN")
data = [
[101, 10.01, datetime.strptime('2021-01-01', '%Y-%m-%d')],
[101, 102.01, datetime.strptime('2021-01-01', '%Y-%m-%d')],
[102, 93.0, datetime.strptime('2021-01-01', '%Y-%m-%d')],
[103, 913.1, datetime.strptime('2021-01-02', '%Y-%m-%d')],
[101, 900.56, datetime.strptime('2021-01-03', '%Y-%m-%d')]
]
df = spark.createDataFrame(data, ['ACCT', 'AMT', 'TXN_DT'])
df.show()
window = Window.partitionBy('ACCT').orderBy(desc("TXN_DT")).rowsBetween(
Window.unboundedPreceding, Window.currentRow)
df = df.withColumn('rownum', row_number().over(window))
df.show()